Commercial Mathematics

Exercise 8.1

- **1.** (a) 6 months : $1\frac{1}{2}$ years
 - or 6 months: $1\frac{3}{2} \times 12$ months
 - or 6 months : 18 months1:3
- **2.** Divide 270 in the ratio :
 - (a) 1:2:3

$$Sum = 1 + 2 + 3 = 6$$

First part =
$$\frac{1}{6} \times 270 = 45$$

Second part =
$$\frac{2}{6} \times 270 = 90$$

Third part =
$$\frac{3}{6} \times 270 = 135$$

(c) 1:4:5

$$Sum = 1 + 4 + 5 = 10$$

First part =
$$\frac{1}{10} \times 270 = 27$$

Second part =
$$\frac{4}{10} \times 270 = 108$$

Third part =
$$\frac{5}{10} \times 270 = 135$$

- (b) 3 hrs: 2 days
- or $3 \text{ hrs}: 2 \times 24 \text{ hrs}$

3 hrs: 48 hrs

1:16

(b) 4:5

$$Sum 4 + 5 = 9$$

First part =
$$\frac{4}{9} \times 270 = 120$$

Second part =
$$\frac{5}{9} \times 270 = 150$$

3.

4.

Ratio
$$= 7:4$$

Sum of ratio
$$= 7 + 4 = 11$$

First number
$$=\frac{7}{11} \times 55 = 35$$

Second number =
$$\frac{4}{11} \times 55 = 20$$

Ratio = 25:13

Sum of ratio = 25 + 13 = 38

Let length of whole line segment = x

So, smaller one
$$=\frac{13}{38} \times x = 6.5$$

or

$$x = \frac{6.5 \times 38}{13 \times 10}$$

$$x = 19 \,\mathrm{cm}$$

So, the length of line segment is 19 cm

5. Given

B earns
$$=$$
 1260

So,

A earns =
$$3 \times 1260 = 3780$$

Ratio
$$B: A = 1260: 3780 = 1:3$$

So,
$$x \times 18 = 30 \times 27$$

 $x = \frac{30 \times 27}{18}$

$$x = 45$$

(c)
$$42:18::x:15$$

So, $18 \times x = 42 \times 15$

$$x = \frac{42 \times 15}{18}$$

$$x = 35$$

(b)
$$x:64::30:24$$

$$x \times 24 = 64 \times 30$$
$$x = \frac{64 \times 30}{24}$$

$$x = 80$$

(d) 14:12::21:*x*

So,
$$14 \times x = 12 \times 21$$

$$x = \frac{12 \times 21}{14}$$
$$x = 18$$

7.

labour

$$\frac{x}{640} = \frac{30}{4}$$
$$x = \frac{30 \times 640}{4}$$

$$r = 4800$$

So, `4800 will be paid for 30 days of work.

8. Distance (km)

diesel (l)

$$\begin{array}{c} 20 \\ x \end{array}$$

$$\frac{x}{20} = \frac{660}{220}$$
$$x = \frac{660 \times 20}{220} l$$

$$x = 60$$

So, 60 *l* litres will be needed to ravel a distance of 660 km.

9. 800 km is represent on a map by = 8 cm

100 km is represent on a map by = 1 cm

So, scale 100 km = 1 cm

10. The given ratio of copper and zinc in an alloy = 8:5

The weight of zinc = 9.5 kg

The weight of copper =?

So, the weight of copper = the weight of zinc \times ratio

$$=9.5 \times \frac{8}{5} \text{ kg} = 15.2 \text{ kg}$$

Exercise 8.2

1. (a) Required number =
$$\left(\frac{25}{10}\right) \times 100 = 250$$

(b) Required number =
$$\frac{2 \times 100}{\frac{25}{4}} = \frac{2 \times 100 \times 4}{25} = 32$$

(c) Required number =
$$\left(\frac{23 \text{ kg}}{57\frac{1}{2}}\right) \times 100 = \left(\frac{23 \text{ kg}}{\frac{115}{2}}\right) \times 100 = \frac{23 \times 100 \times 2}{115} = 40$$

2. (a)
$$\frac{2}{5} = \frac{2}{5} \times 100 \% = 40 \%$$

(b)
$$\frac{33}{50} = \frac{33}{50} \times 100\% = 66\%$$

(c)
$$\frac{5}{60} = \frac{5}{60} \times 100\% = \frac{25}{3}\% = 8\frac{1}{3}\%$$
 (d) $\frac{21}{70} = \frac{21}{70} \times 100\% = 30\%$

d)
$$\frac{21}{70} = \frac{21}{70} \times 100\% = 30\%$$

(e)
$$\frac{24}{80} = \frac{24}{80} \times 100\% = \frac{24 \times 5}{4}\% = 30\%$$

3. (a)
$$50.2 = \frac{502}{10} = \frac{5020}{100} = 5020\%$$

(b)
$$0.275 = \frac{275}{1000} = \frac{275}{100 \times 10} = \frac{27.5}{100} = 27.5\%$$

(c)
$$0.02 = \frac{2}{100} = 2\%$$

(d)
$$0.001 = \frac{1}{1000} = \frac{1}{100 \times 10} = \frac{0.1}{100} = 0.1\%$$

(e)
$$5.98 = \frac{598}{100} = 598\%$$

(f)
$$0.09 = \frac{9}{100} = 9\%$$

(g)
$$0.92 = \frac{92}{100} = 92\%$$

(h)
$$2.05 = \frac{205}{100} = 205\%$$

4. (a)
$$12.5\% = \frac{125}{10 \times 100} = \frac{1}{8}$$

(b)
$$\frac{18.5}{100} = \frac{185}{100 \times 10} = \frac{37}{200}$$

(c)
$$33\frac{1}{3}\% = \frac{100}{3}\% = \frac{100}{3 \times 100} = \frac{1}{3}$$

(d)
$$66\frac{2}{3}\% = \frac{200}{3}\% = \frac{200 \times 1}{3 \times 100} = \frac{2}{3}$$

5. (a)
$$17.5\% = \frac{17.5}{100} = \frac{175}{1000} = 0.175$$

(b)
$$12.5\% = \frac{12.5}{100} = \frac{125}{1000} = 0.125$$

(c)
$$66\frac{2}{3}\% = \frac{200}{3}\% = \frac{200}{3\times100} = \frac{2}{3} = 0.67$$
 (d) $33\frac{1}{3}\% = \frac{100}{3}\% = \frac{100}{3\times100} = \frac{1}{3} = 0.33$

(d)
$$33\frac{1}{3}\% = \frac{100}{3}\% = \frac{100}{3 \times 100} = \frac{1}{3} = 0.33$$

6. (a) Required
$$\% = \frac{30}{60} \times 100 \% = 50 \%$$
 (b) Required $\% = \frac{20}{20} \times 100 \% = 100 \%$

(b) Required
$$\% = \frac{20}{20} \times 100\% = 100\%$$

(c) Required
$$\% = \frac{60 \text{ kg}}{80 \text{ kg}} \times 100 \% = 75 \%$$

(d) Required
$$\% = \frac{112 l}{224 l} \times 100 \% = \frac{100}{2} \% = 50 \%$$

7. (a)
$$33\frac{1}{3}\%$$
 of $456 = \frac{100}{3}\%$ of $456 = \frac{100}{3 \times 100} \times 456 = 152$

(b)
$$66\frac{2}{3}\% \text{ of } 567 = \frac{200}{3}\% \text{ of } 567 = \frac{200}{3 \times 100} \times 567 = 2 \times 189 = 378$$

(c)
$$12\frac{1}{2}\%$$
 of $24 = \frac{25}{2}\%$ $24 = \frac{25}{2 \times 100} \times 24 = \frac{6}{2} = 3$

(d) 20% of 800 kg =
$$\frac{20}{100} \times 800 \text{ kg} = 20 \times 8 \text{ kg} = 160 \text{ kg}$$

(e) 30% of 70 kg =
$$\frac{30}{100} \times 70$$
 kg = 21 kg

(f)
$$45\%$$
 of 73 hrs $=\frac{45}{100} \times 73$ hrs $=\frac{3285}{100}$ hrs $=32.85$ hrs

(g) 27% of 90
$$l = \frac{27}{100} \times 90 l = \frac{243 l}{10} = 24.3 l$$

(h) 12% of
$$^{\circ}65 = \frac{12}{100} \times 65 = \frac{780}{100} = 7.8$$

8. (a) The required number =
$$80 + 10\%$$
 of $80 = 80 + \frac{10 \times 80}{100} = 80 + 8 = 88$

(b) The required number =
$$150 - 5\%$$
 of $150 = 150 - \frac{5 \times 150}{100} = 150 - \frac{75}{10} = 150 - 7.5 = 142.5$

(c) The required number =
$$240 - 25\%$$
 of $240 = 240 - \frac{240 \times 25}{100} = 240 - \frac{600}{10} = 180$

Exercise 8.3

1. (a) Let the number be
$$x$$

Then, 20% of
$$x = 8$$

$$\frac{20}{100} \times x = 8$$

$$\Rightarrow x = \frac{8 \times 100}{20} = 40$$

$$\Rightarrow x = 40$$

Then, 30% of
$$y = 150$$
 \Rightarrow $y = \frac{150 \times 100}{30} = 500$ $\Rightarrow \frac{30}{100} \times y = 150$ \Rightarrow $y = 500$

2. The weight of cake =
$$2.25 \text{ kg}$$

The percentag of sugar in cake = 35%

∴ required weight of sugar in cake = 35% of 2.25 kg
=
$$\frac{35}{100} \times 2.25 \times 1000 \,\text{gm}$$
 [∴1kg = 1000gm]
= 35× 2.25× 10 = 787.5 gm

3. Salary of employee for 1 month = `15250

Salary of employee for 12 month (i.e., Annual salary)

Bonus declared for the employee = 2%

$$=$$
 $\frac{2}{100} \times 183000 = 1830 \times 2 = 3660$

4. Total number of throws of a coin = 60

Number of time recorded to get tail = 35%

$$\therefore \text{ Number of tails recorded (or, got)} = 35\% \text{ of } 60 = \frac{35}{100} \times 60 = \frac{105}{5} = 21$$

And number of heads got (or, recorded) = 60 - 21 = 39

5. The population of a town in 1986 = 70,350

And population of same town in 1987 = 105525

Increase in population during 1 year = 105525 - 70350 = 37175

$$\therefore \text{ Required increase \% in population in } 1987 = \frac{35175}{70350} = 100 \% = 50 \%$$

And the retailer sells it for = 7.50

Increase in price =
$$7.50 - 5 = 2.5$$

 $\therefore \qquad \text{Required increase } \% = \frac{\text{Increase value}}{\text{Original value}} \times 100\%$

$$=\frac{2.5}{5} \times 100 \% = \frac{250}{5} \% = 50 \%$$

7. Cost of a garment = 700

Discount on it = 5%

- \therefore Required discount amount = 5% of $^{\circ}700 = ^{\circ}\frac{5}{100} \times 700 = ^{\circ}35$
- **8.** Number of students out of 120 who got disctinction in Maths = 80

∴ Required % of students who got distinction in Maths =
$$\frac{80}{120} \times 100\%$$

= $\frac{400}{6}$ % = 66.66%

Number of students out of 100 who got distinction in English = 70

Required % of students who got distinction in English = $\frac{70}{100} \times 100\% = 70\%$

Since 70% > 66.66%. Hence, English is better.

9. Class VI : Sect-A, Total students = 50

No. of students passed the exam = 45

$$\therefore$$
 Pass student % = $\frac{45}{50} \times 100\% = 90\%$

Sect.-B Total students = 60

Failed students = 5

$$\therefore$$
 Passed students = $60 - 5 = 55$

Passed students
$$\% = \frac{55}{60} \times 100\% = \frac{550}{6}\% = 91.66\%$$

Since 91.66% > 90%. Hence, Sec.-B had better result.

10. Let total number of pages in the book be 100.

Govind read the pages in a day = 75%

So, the remaining pages to be read =100-75=25%

But it is given that 32 pages still has to read by Govind.

$$\Rightarrow$$
 25% = 32 pages
or, $1\% = \frac{32}{25}$ pages
or, $100\% = \frac{32}{25} \times 100$
= 32×4 = 128 pages

Hence, total number of pages in the book = 128 pages

Exercise 8.4

1. C.P. of a dozen (or 12) eggs = 1 15

S.P. of
$$1 \text{ egg} = 2.50$$

S.P. of a dozen (or, 12) eggs =
$$2.50 \times 12 = 30$$

Since S.P. > C.P. therefore, there is a profit. Profit - S.P. - C.P.

Profit = S.P. – C.P.
=
$$(30-15)$$
= 15

Hence, the selling price of eggs per dozen is `30 having profit is `15.

2. C.P. of 3 chair = $^{\circ}$ 650

$$S.P. = ?$$

$$\therefore$$
 S.P. = C.P. + Profit

$$S.P. = (650 + 200)$$

= 850

3. S.P. of an article = 1250

$$C.P. = ?$$

C.P. of the article = S.P. + Loss
=
$$(1250 + 215) = 1465$$

Hence, the cost price of the article is ` 1465.

4. The C.P. of 1 kg sugar = 13.50

$$(:: 1 \text{kg} = 1000 \text{gm})$$

And cost of 500 gm packet = 25 P =
$$\frac{25}{100}$$
 = 0.25

:. Cost of 1000 gm (i.e., 1 kg) packet =
$$0.25 \times 2 = 0.50$$

Total cost of 1 kg sugar with packet = $^13.50 + ^00.50$

 \therefore Total cost price of 10 kg sugar = $^{\circ}$ 14 × 10 = $^{\circ}$ 140

S.P. of
$$10 \text{ kg sugar} = 155$$

Since

Therefore, there is a profit.

Therefore, there is a loss.

5. S.P. of TV set = $^{\circ}$ 21500

S.P. of its cabinet = 1800

Total S.P. of 1 set with cabinet = 21500 + 1800 = 23300

 \therefore Total S.P. of 8 such sets with cabinets = $23300 \times 8 = 186400$

C.P. of the TV set = 13500

C.P. of the cabinet = 1250

Total C.P. of 1 set with cabinet = 13500 + 1250 = 14750

 \therefore Total C.P. of 8 such sets with cabinets = $14750 \times 8 = 118000$

Since S.P. of 8 sets > C.P. of 8 sets

Therefore, there is a profit.

$$\therefore$$
 profit = S.P. – C.P. = ` 186400 – ` 118000 = ` 68400

6. Cost price of defective Titan watch = `1550

Selling price of defective Titan watch = `1325

Since C.P. > S.P.

Loss =
$$C.P. - S.P. = 1550 - 1325 = 225$$

7. Cost of box = $^{\circ}$ 670

Cost of painting it = 45

And cost of transport it = 25

 \therefore Total cost of box = `670 + `45 + `25 = `740

Selling price of this box = 1120

Since S.P. > C.P. Therefore, there is a gain.

8. S.P. of old car = `45900, Profit = `2100, C.P. = ?

$$C.P. = S.P - Profit$$

= $^45900 - ^2100 = ^43800$

If the S. P of the car be = 53670, then Profit = ?

$$\therefore$$
 Profit = S. P - C. P.

Difference on both the profits = 9870 - 2100 = 7770

:. he would have got `7770 more profit.

9. Loss on 1000 copies of a book = 520

C.P. of 1 book = 10.50

Then, C.P. of 1000 copies of this book = $10.50 \times 1000 = 10500$

S.P. of 1000 books = ?

S.P. of 1000 books = C.P. of 1000 books – loss on 1000 copies of the book.

10. Cost of each (one) sweater = \ 430

S.P. of 25 sweaters = 14750

C.P. of 25 sweaters = $^430 \times 25 = ^10750$

Total profit on 25 sweaters = S.P. of 25 sweaters – C.P. of 25 sweaters = ` 14750 - ` 10750 = ` 4000

$$\therefore \text{ Profit on Per (i.e. 1) sweater} = \frac{4000}{25} = 160$$

Exercise 8.5

1. (a) C.P. = 72 per dozen S.P. = 7.50 per piece

S.P. =
$$7.50 \times 12 = 90$$
 per dozen

Since S.P. > C.P.,

there is a profit.

C.P = 4500, S.P. = 4250(b)

Since S.P. < C.P, there is a loss.

Loss (L) = C.P. – S.P.
=
$$^{\cdot}4500 - ^{\cdot}4250 = ^{\cdot}250$$

Loss (L%) = $\frac{L}{C.P.} \times 100\% = \frac{250}{4500} \times 100 = 5.55\%$

C.P. for 100 m = 2000, C.P. for 1 m = 2000

S.P. for per (i.e., one) m = 38

Since S.P. > C.P., there is a profit.

C.P. = `2400, Loss % = 6%

Loss % =
$$\frac{\text{Loss}}{\text{C.P.}} \times 100 = \frac{\text{Loss}}{2400} \times 100$$

Loss = $24 \times 6 = 144$, S.P. = ?

S.P. = C.P. - Loss = 2400 - 144 = 2256by,

2. C.P. of cow = 8500 Loss = 3%, S.P. = ?

: Loss percentage =
$$\frac{\text{Loss}}{\text{C.P.}} \times 100$$
 (: Loss = C.P. - S.P.)
$$3 = \frac{8500 - \text{S.P.}}{8500} \times 100$$

$$3 \times 85 = 8500 - \text{S.P.}$$

$$3 \times 85 = 8500 - \text{S.P.}$$
S.P. = ` $(8500 - 255) =$ ` 8245
Therefore,
$$8245 =$$
 ` 255

Therefore,

Hence, the selling price of the cow is `8245 and profit is `255.

3. C.P. of an article = `55, Profit = 5%, S.P = ?

$$Profit \% = \frac{Profit}{C.P} \times 100$$

$$5 = \frac{S.P - C.P}{C.P} \times 100 \qquad (\because profit = S.P. - C.P.)$$

$$5 = \frac{S.P - 55}{55} \times 100$$

$$55 = 20 S.P. - `1100$$

$$20 S.P = `(1100 + 55) = `1155$$

$$S.P = `\frac{1155}{20} = `57.75$$

Hence, the S.P. of an article is 57.75

4. C.P. of dozen (12) Eggs =
$$^{^{\circ}}$$
 24, C.P. of 1 egg = $^{^{\circ}}$ $\frac{24}{12}$ = $^{^{\circ}}$ 2

C.P. of 100 eggs = $2 \times 100 = 200$, gain = 12%

S.P. of 100 eggs = ?

or,

$$P\% = \frac{P}{C.P.} \times 100$$
 [::gain = profit]

$$12 = \frac{P}{200} \times 100 = \frac{P}{2}$$

$$P = 12 \times 2 = 24$$

S.P. = C.P. + P

S.P. of 100 eggs = C.P. of 100 eggs + Profit= 200 + 24 = 224

Since S.P. of 1 Banana > C.P. of 1 Banana

Therefore, there is a profit

Hence, Profit = S.P. - C.P.

$$= \frac{11}{10} - \frac{10}{11} = \frac{11 \times 11 - 10 \times 10}{110} = \frac{121 - 100}{110} = \frac{21}{110}$$
Profit % = $\frac{\text{Profit}}{\text{C.P.}} \times 100 = \frac{\left(\frac{21}{110}\right)}{\left(\frac{10}{11}\right)} \times 100 = \frac{21 \times 11}{110 \times 10} \times 100 = \frac{21 \times 11}{11} = 21 \%$

6. S.P. of the article = 460 , loss = 8%

C.P. of the article =?

$$Loss \% = \frac{Loss}{C.P.} \times 100$$

$$Loss \% = \frac{C.P. - S.P}{C.P.} \times 100$$

$$8 = \frac{C.P. - 460}{C.P.} \times 100$$

$$2 = \frac{C.P. - 460}{C.P.} \times 25$$

$$2 \text{ C.P.} = 25 \text{ C.P.} - 11500$$

$$25 \text{ C.P} - 2 \text{ C.P} = 11500$$

$$23 \text{ C.P} = 1500$$

$$\text{C.P.} = \frac{11500}{23} = 500$$

Hence, the cost price of the article is `500.

7. S.P. of machine = 2040, loss = 15%

Now, we know that,

C.P. =
$$^{\sim}$$
 2400, Profit % = 10% and New S.P. = ?

S.P. =
$$\frac{\text{profit } \% \times \text{C.P.}}{100} + \text{C.P}$$

= $\frac{10 \times 2400}{100} + 2400$
= $240 + 2400 = 2640$

Hence, new selling price of machine will be `2640.

8. The given,

S.P. of a few books =
$$^{\sim}$$
 6525, Loss % = 10 % C.P. = ?

Loss % =
$$\frac{\text{C.P.} - \text{S.P.}}{\text{C.P}} \times 100$$

 $10 = \frac{\text{C.P} - 6225}{\text{C.P}} \times 100$
C.P. = 10 C.P. - 65250
9 C.P = $\frac{65250}{9} = 7250$

Now, we know that,

C.P. =
$$^{\sim}$$
 7250, Profit % = 10 % and new S.P. = ?

S.P. =
$$\frac{\text{profit } \% \times \text{C.P.}}{100} + \text{C.P}$$

= $\frac{10 \times 7250}{100} + 7250$
= $\frac{725}{7250} + 7250 = 7975$

Hene, original cost price is `7250 and new S.P. is `7975.

9. The given

gains % =
$$\frac{\text{S.P.} - \text{C.P.}}{\text{C.P}} \times 100$$

$$25 = \frac{155 - \text{C.P.}}{\text{C.P}} \times 100$$

$$\text{C.P.} = \frac{4 \times 155 - 4 \text{ C.P.}}{5 \text{ C.P}} = \frac{620}{5} = 124$$

$$\Rightarrow \text{C.P.} = \frac{620}{5} = 124$$

Therefore, the C.P. of 1 metre of silk cloth = 124

:. The C.P. of 200 metres of silk cloth = $^124 \times 200 = ^24800$ Similarly,

The S.P of 200 metres of silk cloth = $155 \times 200 = 31000$

The profit = S.P - C.P = 31000 - 24800 = 6200

Hence, the actual profit is 6200 by selling 200 m of the silk cloth.

10. The S.P. of an article = $^{\circ}$ 368, Loss % = 8%, C.P. = ?

Loss % =
$$\frac{\text{C. P.} - \text{S. P.}}{\text{C. P}} \times 100$$

$$8 = \frac{\text{C. P} - 368}{\text{C. P}} \times 100$$

$$2\text{C. P.} = 25 \text{ C. P.} - 9200$$

$$23 \text{ C. P} = 9200$$

$$\text{C. P.} = \frac{9200}{23} = 400$$

Now, we know that,

C.P. = $^{\sim}$ 400, gain % = 10 % and new S.P. = ?

$$S.P. = \frac{\text{gaint } \% \times \text{C.P.}}{100} + \text{C.P}$$

$$= \frac{10 \times 400}{100} + 400 = 40 + 400 = 440$$

11. Total C.P. of an air cooler = (1500 + 575) = 2075

Profit = 4% and S.P. = ?

∴ Profit % =
$$\frac{\text{S.P.-C.P.}}{\text{C.P}} \times 100$$

∴
$$4 = \frac{\text{S.P-2075}}{2075} \times 100$$

$$4 \times 2075 = (S.P. - 2075) \times 100$$

$$83 = \text{S.P.} - 2075$$

$$S.P. = 2075 + 83 = 2158$$

12. C.P of per (i.e., 1) sack of rice = `1500

And C.P. of per 3 sacks of rice = $1500 \times 3 = 4500$

Cost of transporting them = 125

 \therefore total C.P. of sacks of rice = 4500 + 125 = 4625

S.P. of all three sacks = 5087.50

Since S.P > C.P, there is a profit.

(a) Profit = (5087.50 - 4625)

(b)
$$P\% = \frac{P}{C.P.} \times 100$$
$$= \frac{462.5}{4625} \times 100 = 10\%$$

13. The C.P of soda set = 22000

Profit % = 8%, S.P. = ?

∴ Profit % =
$$\frac{\text{S.P.-C.P.}}{\text{C.P}} \times 100$$

∴ $8 = \frac{\text{S.P-22000}}{22000} \times 100$
`8×220 = S.P. - `22000
S.P. = `22000 + `1760 = `23760

Hnce, the selling price is 23760

14. The selling price (S.P.) of an almirah = 4000, Loss % = 20%

$$C.P = ?$$

Loss % =
$$\frac{\text{C.P.} - \text{S.P.}}{\text{C.P}} \times 100$$

$$20 = \frac{\text{C.P} - 4000}{\text{C.P}} \times 100$$

C.P. = 5 C.P. - ` 20000
4 C.P = ` 20000

$$C.P. = 5000$$

Hence, the cost price of the almirah is 5000.

15. : Each (i.e., one) crates having eggs = 10

$$\therefore$$
 40 crates having eggs = $40 \times 10 = 400$

Now, C.P. of 40 crates of eggs (i.e., 400 eggs) = 400

But on the way, number of eggs were broken = 25

$$\therefore$$
 Remaining eggs = $400 - 25 = 375$

Given, S.P. of one (i.e., each) egg = 1.20

S.P. of 375 eggs =
$$1.20 \times 375 = 450$$

Since S.P. > C.P. therefore, there is a profit.

P=S.P. - C.P. = `450 - `400 = `50
P% =
$$\frac{P}{CP} \times 100 = \frac{50}{400} \times 100 = \frac{50}{4} = 12\frac{1}{2}$$
%

Exercise 8.6

1. (a)
$$P = 1500$$
, $R = 5.5\%$, $I = 16.50$, $T = (in days)$?

by
$$I = \frac{P \times R \times T}{100},$$
We have
$$T = \frac{I \times 100}{P \times R} = \frac{16.50 \times 100}{1500 \times 5.5}$$

$$= \frac{1}{5} \text{ years} \qquad [\because 1 \text{ year} = 365 \text{ days}]$$

$$= \frac{1}{5} \times 365 \text{ days}$$

$$\therefore \qquad T = 73 \text{ days}$$

(b)
$$P = 3800$$
, $R = 4\%$, $I = 60.80$, $T = (in days)$?
by $I = \frac{PRT}{100}$
We have $T = \frac{I \times 100}{PR}$ year $= \frac{60.80 \times 100}{3800 \times 4} = \frac{60.80}{38 \times 4}$
 $= \frac{15.2}{38} = 0.4$ years $= 0.4 \times 365$ days [::1year = 365days]

 $T = 146 \, days$

2. (a) Here, I=
3500
, T= 5 years, R=14%
by
$$P = \frac{I \times 100}{R \times T} = \frac{3500 \times 100}{14 \times 5} = \frac{700 \times 100}{14}$$
$$\therefore P = ^{5000}$$

3.
$$P_1 = 5600$$
, $T_1 = 8$ year, $R_1 = 6\%$, $I_1 = ?$

$$I_1 = \frac{P_1 R_1 T_1}{100} = \frac{5600 \times 6 \times 8}{100} = 2688$$

$$P_2 = 5000$$
, $T_2 = 10$ year, $T_2 = 5\%$, $T_2 = ?$

$$I_2 = \frac{P_2 R_2 T_2}{100} = \frac{5000 \times 5 \times 10}{100}$$

 $=50 \times 50 = 2500$ 2688 > 2500

Clearly,

Hence, first investment is better

4. Here, we have to given Principal (P) = 876, Rate (R) = 4%

Time (T) = 8 months =
$$\frac{8}{12}$$
 years

[:1 year = 12 months, so 1 month =
$$\frac{1}{12}$$
 year]

$$\therefore S.I. = \frac{PRT}{100} = \frac{876 \times 4 \times 8}{100 \times 12} = \frac{73 \times 4 \times 8}{100} = \frac{2336}{100} = 23.36$$

5. P=`800, R=5%, T=146 days =
$$\frac{146}{365}$$
 years = $\frac{2}{5}$ years
I (or, S.I.) = $\frac{PRT}{100} = \frac{800 \times 5 \times 2}{100 \times 5} = `16$

6. (a)
$$P = ?$$
, $T = 2\frac{1}{2}$ year $= \frac{5}{2}$ year, $R = ?$, $I = `120$, $A = `520$

$$\begin{array}{c} : = \frac{PRT}{100} \\ 120 = \frac{P \times R \times 5}{100 \times 2} \\ P \times R = \frac{120 \times 200}{5} \\ P \times R = \frac{1200 \times 200}{400} \\ P \times R = \frac{1200 \times 200}{400} \\ P \times R = \frac{1200 \times 200}{100} \\ P \times R = \frac{1200 \times 20$$

Total Amount = P + I = 1200 + 76.5 = 1276.5

8.
$$P = 1000$$
, $R = 10\%$, $T = ?$, $A = ?$

Time = days from January 1st to August 7th
= January + February + March + April + May + June + July + August
=
$$30 + 28 + 31 + 30 + 31 + 30 + 31 + 7 = 219 \text{ days} = \frac{219}{365} \text{ year } (\because \text{ year} = 3 \text{ days})$$

$$I = \frac{P \times R \times T}{100} = \frac{1000 \times 10 \times 219}{100 \times 365} = \frac{21900}{365} = 60$$

$$\therefore$$
 Amount (A) = P + I = `1000 + `60 = `1060

Hence, Total amount that 'A' pay after 219 days is ` 1060.

9. For first Person :
$$P = 20000$$
, $R = 8\%$, $T = 5$ years

:. Interest for First Person (I₁) =
$$\frac{PRT}{100} = \frac{20000 \times 8 \times 5}{100} = 200 \times 40 = 8000$$

For client: P = 20,000, T = 5 years, R = 14 %

:. Interest for client (I₂) =
$$\frac{PRT}{100} = \frac{20000 \times 14 \times 5}{100} = 200 \times 700 = 14000$$

Money gained by the person in the transaction after 5 years = 14000 - 8000 = 6000

10.
$$P = 50000$$
, $A = 102500$, $R = 21\%$, $I = ?$, $T = ?$

By
$$A = P + I$$
, We have $I = A - P = `102500 - `50000 = `52500$
By $I = \frac{P \times R \times T}{100}$, We have $52500 = \frac{50000 \times 21 \times T}{100}$ $T = \frac{52500}{500 \times 21} = \frac{525}{105} = 5$ years

11.
$$P = 6000$$
, $I = 360$, $R = 15\%$, $T = ?$

by
$$I = \frac{PRT}{100}$$
,
We have $T = \frac{I \times 100}{PR} = \frac{360 \times 100}{6000 \times 15}$
 $= \frac{6}{15} = \frac{2}{5} \text{ year} = \frac{2}{5} \times 365 \text{ days}$ [:1year = 365days]
 $\therefore T = 2 \times 73$
= 146 days

12. I =
$$^{\sim}$$
 17355, R = 15% p.a., T = 1 year, P = ?

by
$$I = \frac{PRT}{100}$$
,
We have $P = \frac{I \times 100}{R \times T} = \frac{17355 \times 100}{15 \times 1}$
∴ $P = 115700$

MCQ's